
MPI Tips on Cray XT5:
Jaguar and Kraken

Mark Fahey
mfahey@utk.edu or faheymr@ornl.gov

NICS Scientific Computing Group
Lead
April 2009 XT Workshop

Overview

• Assuming knowledge of MPI
• Assuming you have run on an XT (3, 4, or 5)

– Or a cluster with MPICH

• Will show ways to improve performance of MPI [on a Cray
XT5]
– Some examples from both Jaguarpf and Kraken
– No silver bullets though
– Nothing about MPI buffer sizes and their heuristic settings

2 April 2009 NCCS/NICS User Workshop

Outline

• MPT
• Environment Variables
• Rank Placement

– CrayPAT help

• MPI Programming Techniques
• OpenMP
• Other

3 April 2009 NCCS/NICS User Workshop

MPT – Cray’s MPI library

• Use latest MPT (3.1.x)
– Significant improvements

• Many users have been/are setting env vars to set buffer
sizes for 3.0 or before

• 3.1 attempts to set the right buffer sizes at launch time
– Rather than static settings

• Suggestion: if you use env vars based on MPT 3.0 or
earlier, comment them out and try out 3.1 w/o env vars

• Status:
– Kraken: default 3.1.0 Jaguar: default 3.1.0

4 April 2009 NCCS/NICS User Workshop

Environment Variables
MPI
• Next few slides will cover environment variables that are

associated with MPI [performance]
• Default settings are set based on the best performance on

most codes.
– Some codes may benefit setting or adjusting environment

variable settings.

• Find much of this information with “man mpi”
– Yes, you should read the MPI man page!

• As shown on previous slide, the MPI environment changed
fairly significantly, thus it is important to re-read the MPI
man pages and other related documents at Cray

5 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_FAST_MEMCPY
• If set, enables an optimized memcpy routine in MPI. The

optimized routine is used for local memory copies in the
point-to-point and collective MPI operations.
–  This can help performance of some collectives that send large

(256K and greater) messages.
• Collectives are almost always faster
• Speedup varies by message size
• Example: If message sizes are known to be greater than 1 megabyte, then

an optimized memcpy can be used that works well for larges sizes, but may
not work well for smaller sizes.

– Default is not enabled (because there are a few cases where
causes performance degradation)

– Ex: PHASTA at 2048 processes: reduction from 262 s to 195 s

6 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_COLL_SYNC
• If set, a Barrier is performed at the beginning of each

specified MPI collective function. This forces all processes
participating in that collective to sync up before the
collective can begin.
–  To enable this feature for all MPI collectives, set the value to 1. Default is off.

• Can be enabled for a selected list of MPI collectives
• There are rare examples where this helps

–  If the code has lots of collectives and MPI profiling shows
imbalance (lots of sync time), this may help

– Ex: PHASTA (CFD-turbulent flows) many MPI_Allreduce calls
• At 2048 processes : reduction from 262 sec to 218 sec.

– Ex: But slowed down NekTarG (CFD-Blood Flow) by about 7%
7 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_MPIIO_HINTS
•  If set, override the default value of

one or more MPI-IO hints. This also
overrides any value set in the
application code with calls to the
MPI_Info_set routine.

•  The hints are applied to the file when
it is opened with an MPI_File_open()
call.

•  MPICH_MPIIO_HINTS_DISPLAY
–  If set, causes rank 0 in the participating

communicator to display the names and
values of all MPI-IO hints that are set for
the file being opened with the
MPI_File_open call.

Default settings:
PE 0: MPIIO hints for

c2F.TILT3d.hdf5:

 cb_buffer_size = 16777216

 romio_cb_read = automatic

 romio_cb_write = automatic

 cb_nodes = #nodes/8

 romio_no_indep_rw = false

 ind_rd_buffer_size = 4194304

 ind_wr_buffer_size = 524288

 romio_ds_read = automatic

 romio_ds_write = automatic

 direct_io = false

 cb_config_list = *:1

8 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_MPIIO_HINTS (cont.)
Examples:
•  Syntax

–  export MPICH_MPIIO_HINTS=data.hdf5:direct_io=true

•  For FlashIO at 5000 processes writing out 500MB per MPI thread, the following
improved performance:
romio_cb_write = "ENABLE" 
romio_cb_read = "ENABLE” 
cb_buffer_size = 32M

–  When enаbled, аll collective reаds/writes will use collective buffering. When disаbled, аll collective reаds/writes
will be serviced with individuаl operаtions by eаch process. When set to аutomаtic, ROMIO will use heuristics
to determine when to enаble the optimizаtion.

•  For S3D at 10K cores:
romio_ds_write = ‘disable' - specifies if data sieving is to be done on read.
Dаtа sieving is а technique for efficiently аccessing noncontiguous regions of dаtа
romio_no_indep_rw = 'true' - specifies whether deferred open is used.

–  Romio docs say that this indicates no independent reаd or write operаtions will be performed. This cаn be used
to limit the number of processes thаt open the file.

9 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_MPIIO_CB_ALIGN
• If set to 1, new algorithms that take into account physical I/

O boundaries and the size of I/O requests are used to
determine how to divide the I/O workload when collective
buffering is enabled.
–  This can improve performance by causing the I/O requests of each

collective buffering node (aggregator) to start and end on physical
I/O boundaries and by preventing more than one aggregator
making reference to any given stripe on a single collective I/O call.

–  If set to zero or not defined, the algorithms used prior to MPT
release 3.1 are used.

– Default: not set

10 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_ENV_DISPLAY
• If set, causes rank 0 to display all MPICH environment

variables and their current settings at MPI initialization
time.

• Default: Not enabled.
• Useful for debugging purposes.

• MPICH_VERSION_DISPLAY - displays the version of cray
mpt being used

11 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_SMP_OFF
• If set, disable the on-node SMP device and use the

Portals device for all MPI message transfers
• Use in a rare cases where code benefits from using

Portals matching instead of MPI matching.
• Default: Not enabled.
• Useful for debugging reproducibility issues.

12 April 2009 NCCS/NICS User Workshop

Environment Variables
Buffer Sizes (said I wouldn’t do this)
•  MPICH_UNEX_BUFFER_SIZE often runs out of space

–  When this buffer size cannot be increased sufficiently, MPICH_MAX_SHORT_MSG_SIZE should
be reduced.

–  Making this smaller switches the threshold for short vs long messages. Long messages are not
received unless they are expected (a receive is already posted).

–  There is a performance penalty due to reducing the max short message size, but it will get it
working.

•  MPICH_PTL_UNEX_EVENTS and MPICH_PTL_OTHER_EVENTS have a low
default value.

–  They are almost never adequate for large jobs. The following are good at O(10 thousand) cores.
MPICH_PTL_UNEX_EVENTS=400000 
MPICH_PTL_OTHER_EVENTS=100000

•  When an error that says 'MPI_MSGS_PER_PROC' is not sufficient is received,
increase MPICH_MSGS_PER_PROC. It is an error in the error message.

•  Buffer size variables can be set using k, M and G - Instead of having to
type powers of 2 or count zeroes.
% export MPICH_UNEX_BUFFER_SIZE=1G #sets it to 1gigabyte

13

Based on experience running S3D up to 150,000 cores

April 2009 NCCS/NICS User Workshop

Environment Variables

MPICH_PTL_MATCH_OFF
•  If set, disables registration of receive requests with portals.

–  Setting this allows MPI to perform the message matching for the portals
device. It may be beneficial to set this variable when an application exhausts
portals internal resources and for latency-sensitive applications.

–  Example: Used for LS-DYNA

MPICH_PTL_SEND_CREDITS
• Enables flow control to prevent the Portals event queue from being

overflowed.
–  Value of ‘-1’ should prevent queue overflow in any situation
–  Should only be used as needed, as flow control will result in less optimal

performing code. If the Portals unexpected event queue can not be increased
enough, then flow control may need to be enabled.

14 April 2009 NCCS/NICS User Workshop

Environment Variables
MPICH_PTL_MATCH_OFF
• Case where MPICH_PTL_MATCH_OFF fixed an MPI problem

[3683] : (/tmp/ulib/mpt/nightly/3.0/042108/xt/trunk/
mpich2/src/mpid/cray/src/adi/ptldev.c:2693)

PtlMEMDPost() failed : PTL_NO_SPACE

•  For this, try MATCH, OTHER_EVENTS or SEND_CREDITS env var
[43] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An event
was dropped on the OTHER EQ handle. Try increasing
the value of env var MPICH_PTL_OTHER_EVENTS (cur
size is 2048).

aborting job:
PtlEQPoll/PtlEQGet error

–  Attempts to increase OTHER_EVENTS did not help though (in this case)

15 April 2009 NCCS/NICS User Workshop

Rank Placement

•  In some cases changing how the processes are laid out on the
machine may affect performance, by relieving synchronization/
imbalance time.

•  The default is currently SMP-style placement. This means that for or
a multi-node core, sequential MPI ranks are placed on the same
node.
–  In general, MPI codes perform better using SMP placement Nearest neighbor
–  Collectives have been optimized to be SMP aware

•  For example, an 8-process job launched on a XT5 node with 2 quad-
core processors would be placed as:

PROCESSOR 0 1
RANK 0,1,2,3 4,5,6,7

16 April 2009 NCCS/NICS User Workshop

Rank Placement

•  The default ordering can be changed using the following
environment variable:

MPICH_RANK_REORDER_METHOD

•  These are the different values that you can set it to:
0: Round-robin placement. Sequential MPI ranks are placed on the next node in the list.
1: SMP-style placement. All cores from all nodes are allocated in a sequential order.
2: Folded rank placement. Similar to default ordering except that the tasks N+1 ... 2N

are mapped to slave cores of nodes N ... 1.
3: Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER.

• When to use?
–  Point-to-point communication consumes significant fraction of program time and load

imbalance detected
–  Also shown to help for collectives (alltoall) on subcommunicators (GYRO)
–  Spread out IO across nodes (POP)

17 April 2009 NCCS/NICS User Workshop

Rank order and CrayPAT

• One can also use the CrayPat performance measurement
tools to generate a suggested custom ordering.
– Available if MPI functions traced (-g mpi or –O apa)
–  pat_build –O apa my_program

• see Examples section of pat_build man page

• pat_report options:
– mpi_sm_rank_order

• Uses message data from tracing MPI to generate suggested MPI rank order.
Requires the program to be instrumented using the pat_build -g mpi option.

– mpi_rank_order
• Uses time in user functions, or alternatively, any other metric specified by

using the -s mro_metric options, to generate suggested MPI rank order.
18 April 2009 NCCS/NICS User Workshop

Reordering Workflow

• module load xt-craypat/4.4.1
• Rebuild your code
•  pat_build –O apa a.out
• Run a.out+pat
•  pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report
• Creates MPICH_RANK_REORDER_METHOD.x file
•  Then set env var MPICH_RANK_REORDER_METHOD=3 AND
•  Link the file MPICH_RANK_ORDER.x to MPICH_RANK_ORDER
• Rerun code

19 April 2009 NCCS/NICS User Workshop

CrayPAT example
Table 1: Suggested MPI Rank Order

 Eight cores per node: USER Samp per node

 Rank Max Max/ Avg Avg/ Max Node

Order USER Samp SMP USER Samp SMP Ranks

 d 17062 97.6% 16907 100.0% 832,328,820,797,113,478,898,600

 2 17213 98.4% 16907 100.0% 53,202,309,458,565,714,821,970

 0 17282 98.8% 16907 100.0% 53,181,309,437,565,693,821,949

 1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7

20

• This suggests that
1.  the custom ordering “d” might be the best
2.  Folded-rank next best
3.  Round-robin 3rd best
4.  Default ordering last

April 2009 NCCS/NICS User Workshop

Reordering example
GYRO
• GYRO 8.0

–  B3-GTC problem with 1024 processes

• Run with alternate MPI orderings
–  Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.d

21

Reorder method comm time
Default 11.26s

0 – round-robin 6.94s
2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT
suggestion
almost right!

April 2009 NCCS/NICS User Workshop

Reordering example
TGYRO
• TGYRO 1.0

– Steady state turbulent transport code using GYRO, NEO, TGLF
components

• ASTRA test case
–  Tested MPI orderings at large scale
– Originally testing weak-scaling, but found reordering very useful

22

Reorder
method

TGYRO wall time (min)
20480 40960 81920

Default 99m 104m 105m
Round-robin 66m 63m 72m

Huge win!

April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Pre-posting receives
• If possible, pre-post receives before sender posts the

matching send
– Optimization technique for all MPICH installations

• Not just an XT

• Don’t go crazy pre-posting receives though. Will hit
Portals internal resource limitations eventually.

• Even an IBM manual states:
–  “well-written applications try to pre-post their receives.” And they also warn about posting too

many.

• Code example
–  Halo update – with four buffers (n,s,e,w), post all receive requests as early as

possible. Makes a big difference on CNL (not as important on Catamount).
23 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Overlapping communication with computation
•  Corollary of pre-posting receives
•  Use non-blocking send/recvs when it is possible to

overlap communication with computation
•  In some cases it may be better to replace collective

operations with point to point communications to overlap
communication with computation
–  Caution: Not suggesting every collective be reprogrammed by

hand
–  It may be that a certain part of your algorithm has computation

that could overlap the point to point communications that would
not happen with a [blocking] collective

24 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Example: 9-pt stencil pseudo-code
Basic

9 pt computation

Update ghost cell
boundaries
East/West IRECV,
ISEND, WAITALL

North/South IRECV,
ISEND, WAITALL

Maximal Irecv preposting
Prepost all IRECV

9 pt computation

Update ghost cell
boundaries
East/West ISEND,
Wait on E/W IRECV
only

North/South ISEND,
Wait on the rest

 *Makes use of temp buffers
25 April 2009 NCCS/NICS User Workshop

Example: 9-pt stencil update
!compute stencil

…

!update ghost cell boundaries.

!East/West

MPI_IRECV(XOUT(1,1), 1, mpi_ew_type, nbr_west,
mpitag_wshift, COMM_OCN, request(3))

MPI_IRECV(XOUT(iphys_e+1,1), 1, mpi_ew_type,
nbr_east, mpitag_eshift, COMM_OCN, request(4))

MPI_ISEND(XOUT(iphys_e+1-num_ghost_cells,1), 1,
mpi_ew_type, nbr_east, mpitag_wshift, COMM_OCN,
request(1))

MPI_ISEND(XOUT(iphys_b,1), 1, mpi_ew_type,
nbr_west, mpitag_eshift, COMM_OCN, request(2))

MPI_WAITALL(4, request, status)

!North/South

MPI_IRECV(XOUT(1,jphys_e+1), 1, mpi_ns_type,
nbr_north, mpitag_nshift, COMM_OCN, request(3))

MPI_IRECV(XOUT(1,1), 1, mpi_ns_type, nbr_south,
mpitag_sshift, COMM_OCN, request(4))

MPI_ISEND(XOUT(1,jphys_b), 1, mpi_ns_type,
nbr_south, mpitag_nshift, COMM_OCN, request(1))

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), 1,
mpi_ns_type, nbr_north, mpitag_sshift,
COMM_OCN, request(2))

MPI_WAITALL(4, request, status)

! Prepost receive requests

MPI_IRECV(buf_west_rcv, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_west, &
mpitag_wshift, COMM_OCN, request(7))

MPI_IRECV(buf_east_rcv, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_east, mpitag_eshift,
COMM_OCN, request(8))

MPI_IRECV(XOUT(1,jphys_e+1), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_north, mpitag_nshift,
COMM_OCN, request(5))

MPI_IRECV(XOUT(1,1), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_south, mpitag_sshift,
COMM_OCN, request(6))

! compute stencil

…

! send east-west boundary info

MPI_ISEND(buf_east_snd, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_east, mpitag_wshift,
COMM_OCN, request(1))

MPI_ISEND(buf_west_snd, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_west, mpitag_eshift,
COMM_OCN, request(2))

MPI_WAITALL(2, request(7), status_wait) 

! send north-south boundary info

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells),
buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north,
mpitag_sshift, COMM_OCN, request(3))

MPI_ISEND(XOUT(1,jphys_b), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_south, mpitag_nshift,
COMM_OCN, request(4))

MPI_WAITALL(6, request, status_wait)

26 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Aggregating data
•  For very small buffers, aggregate data into fewer MPI calls

(especially for collectives)
–  Ex. 1 alltoall with an array of 3 reals is clearly better than 3 alltoalls with 1 real
–  Do not aggregate too much. The MPI protocol switches from an short (eager)

protocol to a long message protocol using a receiver pull method once the
message is larger than the eager limit. This limit is by default 128000 bytes, but
it can be changes with the MPICH_MAX_SHORT_MSG_SIZE environment
variable. The optimal size for messages most of the time is less than the eager
limit.

•  Example – DNS
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a larger message

resulting in 25% less runtime for one routine
27 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Aggregating data: Example from CFD

Original  

for (index = 0; index < No; index++){ 
 double tmp; 
 tmp = 0.0; 
 out_area[index] = Bndry_Area_out(A,
labels[index]); 
 gdsum(&outlet_area[index],1,&tmp); 
}  
for (index = 0; index < Ni; index++){ 
 double tmp; 
 tmp = 0.0; 
 in_area[index] = Bndry_Area_in(A,
labels[index]); 
 gdsum(&inlet_area[index],1,&tmp);  
}

void gdsum (double *x, int n, double *work) 
{ 
 register int i; 
 MPI_Allreduce (x, work, n, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD); 
 /* *x = *work; */ 
 dcopy(n,work,1,x,1); 
 return; 
}

Improved  

 for (index = 0; index < No; index++){ 
 out_area[index] = Bndry_Area_out(A,
labels[index]); 
 }

 /* Get gdsum out of for loop */ 
 tmp = new double[No]; 
 gdsum (outlet_area, No, tmp);  
 delete tmp; 

 for (index = 0; index < Nin; index++){ 
 in_area[index] = Bndry_Area_in(A,
labels[index]); 
 }

 /* Get gdsum out of for loop */ 
 tmp = new double[Ni]; 
 gdsum(inlet_area, Ni, tmp);  
 delete tmp;

28 April 2009 NCCS/NICS User Workshop

OpenMP

• When does it pay to add/use OpenMP in my MPI code?
– Add/use OpenMP when code is network bound
– As collective and/or point-to-point time increasingly becomes a

problem, use threading to keep number of MPI processes per
node to a minimum

– Be careful adding OpenMP to memory bound codes
• Can hurt performance

–  It is code/situation dependent!

• Rebecca Hartman-Baker talked about OpenMP Monday
–  Just reinforcing one topic here

29 April 2009 NCCS/NICS User Workshop

OpenMP
aprun depth
• Must get “aprun –d” correct

–  -d (depth) Specifies the number of threads (cores) for each
process. ALPS allocates the number of cores equal to depth
times processes.

–  The default depth is 1. This option is used in conjunction with
the OMP_NUM_THREADS environment variable.

– Also used to get more memory per process
• Get 1 or 2 GB limit by default (machine dependent)

– Many have gotten this wrong, so it is important to understand
how to use it properly!
• The problem is if you don’t do it right a hybrid OpenMP/MPI code can

get multiple threads spawned on the same core which can be
disastrous.

30 April 2009 NCCS/NICS User Workshop

OpenMP
aprun depth (cont.)
 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -q ./omp1 | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 0)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 1)
 Hello from rank 2, thread 0, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 1, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00291. (core affinity = 2)
 Hello from rank 3, thread 0, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 1, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 2, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 3, on nid00291. (core affinity = 3)

 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -d 4 -q ./omp | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 3)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 4)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 5)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 6)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 7)
 Hello from rank 2, thread 0, on nid00292. (core affinity = 0)
 Hello from rank 2, thread 1, on nid00292. (core affinity = 1)
 Hello from rank 2, thread 2, on nid00292. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00292. (core affinity = 3)
 Hello from rank 3, thread 0, on nid00292. (core affinity = 4)
 Hello from rank 3, thread 1, on nid00292. (core affinity = 5)
 Hello from rank 3, thread 2, on nid00292. (core affinity = 6)
 Hello from rank 3, thread 3, on nid00292. (core affinity = 7)

31

All on core 0
One thread
per core as
desired!!!

April 2009 NCCS/NICS User Workshop

Other
IO
• Also note that sometimes IO (especially at scale)

causes scalability issues
– See Crosby’s talk on IO, Wednesday at 9:30

• Ex. how cleaning up some writes improved weak scaling of a CFD code
NektarG from 70% to 95% at 1K to 8K cores

32 April 2009 NCCS/NICS User Workshop

Conclusions/Last words

• Env vars are an easy way to improve performance
–  They may not always be applicable

• Good MPI programming practices are beneficial
–  Pre-posting receives important
–  Aggregating data

• Rank reordering can significantly improve performance
• Use depth option with OpenMP or for extra memory
• Be cognizant of how IO affects your overall scalability
• Some of this may not show a benefit at <1K processes, but can reap

huge wins at 10K to 100K processes
•  This will become a “MPI Tips” webpage

33 April 2009 NCCS/NICS User Workshop

References

• Best I have seen on Env Vars to date:
– Geir Johansen’s presentation and paper from CUG 2008
–  “Managing Cray XT MPI Runtime Environment Variables to

Optimize and Scale Applications”

34 April 2009 NCCS/NICS User Workshop

Extras

35 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Example: 9-pt stencil update
!original

do j=jphys_b,jphys_e

 do i=iphys_b,iphys_e

 XOUT(i,j) = CC(i,j)*X(i,j) + CN(i,j)*X(i,j+1) + CN(i,j-1)*X(i,j-1) +

 & CE(i,j)*X(i+1,j) + CE(i-1,j)*X(i-1,j) +

 & CNE(i,j)*X(i+1,j+1) + CNE(i,j-1)*X(i+1,j-1) +

 & CNE(i-1,j)*X(i-1,j+1) + CNE(i-1,j-1)*X(i-1,j-1)

 end do

end do

!update ghost cell boundaries.

MPI_IRECV(XOUT(1,1), 1, mpi_ew_type, nbr_west, mpitag_wshift, COMM_OCN, request(3))

MPI_IRECV(XOUT(iphys_e+1,1), 1, mpi_ew_type, nbr_east, mpitag_eshift, COMM_OCN, request(4))

MPI_ISEND(XOUT(iphys_e+1-num_ghost_cells,1), 1, mpi_ew_type, nbr_east, mpitag_wshift,
COMM_OCN, request(1))

MPI_ISEND(XOUT(iphys_b,1), 1, mpi_ew_type, nbr_west, mpitag_eshift, COMM_OCN, request(2))

MPI_WAITALL(4, request, status)

36 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Example: 9-pt stencil (cont.)
MPI_IRECV(XOUT(1,jphys_e+1), 1, mpi_ns_type, nbr_north, mpitag_nshift, COMM_OCN, request(3))

MPI_IRECV(XOUT(1,1), 1, mpi_ns_type, nbr_south, mpitag_sshift, COMM_OCN, request(4))

MPI_ISEND(XOUT(1,jphys_b), 1, mpi_ns_type, nbr_south, mpitag_nshift, COMM_OCN, request(1))

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), 1, mpi_ns_type, nbr_north, mpitag_sshift,
COMM_OCN, request(2))

MPI_WAITALL(4, request, status)  

37 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Pre-posting and overlapping example
! Prepost receive requests  
MPI_IRECV(buf_west_rcv, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_west, & mpitag_wshift,
COMM_OCN, request(7)) 
MPI_IRECV(buf_east_rcv, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_east, mpitag_eshift,
COMM_OCN, request(8)) 
MPI_IRECV(XOUT(1,jphys_e+1), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north, mpitag_nshift,
COMM_OCN, request(5)) 
MPI_IRECV(XOUT(1,1), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_south, mpitag_sshift,
COMM_OCN, request(6)) 

! (compute stuff)  
do j=jphys_b,jphys_e  
 do i=iphys_b,iphys_e  
 XOUT(i,j) = CC(i,j)*X(i ,j) + CN(i,j)*X(i ,j+1) + CN(i,j-1)*X(i ,j-1) + CE(i,j)*X(i
+1,j) + CE(i-1,j)*X(i-1,j) + CNE(i,j)*X(i+1,j+1) + CNE(i,j-1)*X(i+1,j-1) +
CNE(i-1,j)*X(i-1,j+1) + CNE(i-1,j-1)*X(i-1,j-1) 
 end do 
end do 

! fill buffers and send east-west boundary info  
i = 1 
do n=1,num_ghost_cells 
 do j=jphys_b,jphys_e  
 buf_east_snd(i)=XOUT(iphys_e+n-num_ghost_cells,j) 
 buf_west_snd(i)=XOUT(iphys_b+n-1,j) 
 i=i+1 
 end do 
end do 

38 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Pre-posting and overlapping example
MPI_ISEND(buf_east_snd, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_east, mpitag_wshift,
COMM_OCN, request(1)) 
MPI_ISEND(buf_west_snd, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_west, mpitag_eshift,
COMM_OCN, request(2))

! receive east-west boundary info and copy buffers into ghost cells  
MPI_WAITALL(2, request(7), status_wait) 

i = 1 
do n=1,num_ghost_cells 
 do j=jphys_b,jphys_e  
 XOUT(n,j) = buf_west_rcv(i) 
 XOUT(iphys_e+n,j) = buf_east_rcv(i) 
 i=i+1 
 end do 
end do 

! send north-south boundary info  
MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north,
mpitag_sshift, COMM_OCN, request(3)) 
MPI_ISEND(XOUT(1,jphys_b), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_south, mpitag_nshift,
COMM_OCN, request(4))

! receive north-south boundary info  
MPI_WAITALL(6, request, status_wait) 

39 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Example: 9-pt stencil – Yoshi optimizations
do j=jphys_b,jphys_e

 do i=iphys_b,iphys_e

 XOUT(i,j) = CC(i,j)*X(i,j) + CN(i,j)*X(i,j+1) + CN(i,j-1)*X(i,j-1) + CE(i,j)*X(i+1,j) +

& CE(i-1,j)*X(i-1,j) + CNE(i,j)*X(i+1,j+1) + CNE(i,j-1)*X(i+1,j-1) + CNE(i-1,j)*X(i-1,j+1) +

& CNE(i-1,j-1)*X(i-1,j-1)

 end do

end do

! update ghost cell boundaries.

!fill buffers and send east-west boundary info

i = 1

do n=1,num_ghost_cells

 do j=jphys_b,jphys_e

 buf_east_snd(i)=XOUT(iphys_e+n-num_ghost_cells,j)

 buf_west_snd(i)=XOUT(iphys_b+n-1,j)

 i=i+1

 end do

end do

MPI_ISEND(buf_east_snd, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_east, mpitag_wshift, COMM_OCN, request(1))

MPI_ISEND(buf_west_snd, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_west, mpitag_eshift, COMM_OCN, request(2))

40 April 2009 NCCS/NICS User Workshop

MPI Programming Techniques
Example: 9-pt stencil – Yoshi optimizations
!receives east-west boundary info and copy buffers into ghost cells

MPI_RECV(buf_west_rcv, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_west, mpitag_wshift, COMM_OCN, status)

MPI_RECV(buf_east_rcv, buf_len_ew, MPI_DOUBLE_PRECISION, nbr_east, mpitag_eshift, COMM_OCN, status)

MPI_WAITALL(2, request, status_wait)

i = 1

do n=1,num_ghost_cells

 do j=jphys_b,jphys_e

 XOUT(n,j) = buf_west_rcv(i)

 XOUT(iphys_e+n,j) = buf_east_rcv(i)

 i=i+1

end do; end do

!send north-south boundary info

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north,

 & mpitag_sshift, COMM_OCN, request(3))

MPI_ISEND(XOUT(1,jphys_b), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_south, mpitag_nshift, COMM_OCN, request(4))

!receive north-south boundary info

MPI_RECV(XOUT(1,jphys_e+1), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north, mpitag_nshift, COMM_OCN, status)

MPI_RECV(XOUT(1,1), buf_len_ns, MPI_DOUBLE_PRECISION, nbr_south, mpitag_sshift, COMM_OCN, status)

MPI_WAITALL(2, request(3), status_wait)

41 April 2009 NCCS/NICS User Workshop

